

Introduction

COMP215: Design \& Analysis of Algorithms

Today

- Introductions
- Syllabus
- Class Webpage \& Kit
- Integer Multiplication

Introduction

- Tasnim Gharaibeh
- Dr. Tasnim
- She, her, hers
- CS Interests:
- AI and Machine Learning Models.
- Natural Language Processing.
- Text Mining.
- Information Retrieval.

Introduction

- Favorite Languages:
- C/C++
- Python
- R
- Java

Introduce yourself!

Name
Major
Fun Fact about you

Syllabus

- Let's go to the class webpage:
- www.cs.kzoo.edu/cs215

Teams

- Add yourself:
- https://teams.microsoft.com///channel/19\%3ANXygOKaYFQvX7dAtjkwQR7gAw2i5Umq NtHzJs-Z6KS01\%40thread.tacv2/General?groupld=f9ec39dd-cf51-4f87-b550-4e93f4228cfb\&tenantld=e214b458-c456-45b4-961a-7852355f177a
- Using the code : y2jj659
- Channels:
- General
- Class Topics
- Discussion Questions
- Mini-Labs
- Projects

Why Study Algorithms?

- Algorithm?

- It's a set of well-defined rules, a recipe, in effect for solving some computational problem.
- Examples:
- Numbers arrangement
- Shortest path

int a, b, area;
printf("Enter side length a: $\left\langle n\right.$ ") ${ }^{3}$
scanf("\%d", \&a);
printf("Enter side length b: \n"); scanf("\%d", \&b);
area $=a^{*} b_{j}$
printf("Area of rectangle is: \%d ", area); return $0^{\text {; }}$

Why Study Algorithms?

- Important for all other branches of computer science.
- Driver of technological innovation.
- Lens on other sciences.
- Good for the brain
- Fun!

Why Study Algorithms?

- Important for all other branches of computer science.
- Routing protocols in communication networks piggyback on classical shortest path algorithms.
- Public-key cryptography relies on efficient number-theoretic algorithms.
- Computer graphics requires the computational primitives supplied by geometric algorithms.
- Database indices rely on balanced search tree data structures.
- Computational biology uses dynamic programming algorithms to measure genome similarity

Why Study Algorithms?

- Important for all other branches of computer science.
- Driver of technological innovation.
"Everyone knows Moore's Law - a prediction made in 1965 by Intel co-founder Gordon Moore that the density of transistors in integrated circuits would continue to double every 1 to 2 years. . . in many areas, performance gains due to improvements in algorithms have vastly exceeded even the dramatic performance gains due to increased processor speed."

Why Study Algorithms?

- Important for all other branches of computer science.
- Driver of technological innovation.
- Lens on other sciences.
- The study of quantum computation has provided a new computational viewpoint on quantum mechanics.
- Price fluctuations in economic markets can be fruitfully viewed as an algorithmic process.

Integer Multiplication

- Need to distinguish between two different things:
- The description of the problem being solved, introducing a computational problem (the inputs and desired output),
- The method of solution (that is, the algorithm for the problem), describing one or more algorithms that solve the problem

Integer Multiplication

- Input: 2 n digit numbers x and y
- Output: product $x^{*} y$
- Primitive Operation add or multiply 2 single digit numbers

Integer Multiplication

- Try:

$$
x * y=2698 * 4263=?
$$

- How many multiplication operations for partial product?
n multiplications / partial product
- How many addition operations for partial product?
at most 2 n additions / partial product
- How many operations in total for partial product?

$$
n+2 n / \text { partial product }
$$

How many operations in total?

$$
n \text { (rows) * }(3 n)=3 n^{2}
$$

We still have to add them all up to compute the final answer, but this takes a comparable number of operations ($3 n^{2}$)

$$
3 n^{2}+3 n^{2}=6 n^{2}
$$

Integer Multiplication

Total number of operations $<=$ constant. n^{2}
Thinking about how the amount of work the algorithm performs scales as the input numbers grow bigger and bigger

Can We Do Better?

